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SUMMARY

Closed-form solutions of the one-dimensional heat-conduction equa-

tions for the flow of heat into a plate with a laminar boundary layer

have been obtained for a configuration entering a planetary atmosphere

with constant velocity and negative entry angle. The atmospheric density

was assumed to obey an exponential law and the temperature was assumed

constant initially. The solution is in the form of a Fourier series

expansion which, for most practical applications, can be approximated by

retaining only one term of the expression. The solution applies to the

initial part of the entry before the maximum heating conditions are

encountered.

INTRODUCTION

One of the serious problems experienced during entry of a vehicle

into a planetary atmosphere is high convective aerodynamic heat-transfer

rates. In some instances when the heat is absorbed in the skin, large

thermal gradients can develop through the skin. Normally the heat con-

duction through a material with a time-dependent heat rate, such as that

encountered during entry of a vehicle into the atmosphere, is difficult

to analyze and can best be handled by step-by-step numerical processes

which are generally time consuming or require the use of automatic com-

puters. (See refs. i and 2.) A few simple conduction analyses have

been performed for special types of entry in which the boundary condi-

tions make it possible to obtain closed analytical expressions, such as

those given in reference 3- The temperature time history of the skin

of a vehicle entering an exponential atmosphere has been analyzed in

reference 4; in this analysis a constant entry angle and laminar flow

are assumed. The obtained solution for the skin of arbitrary thickness,

however, contains terms which generally have to be treated by numerical

integrations. The additional assumption of a constant velocity during

the initial entry phase has been assumed in the present analysis. From

these assumptions a simple but useful closed-form algebraic expression
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has been obtained for the temperature time history of the initial phase
of the entry which generally does not include the phase in which the
maximumheat rate occurs (about elght-tenths of the entry velocity
according to ref. 5). This analysis will however be applicable to a
significant part of manyentry trajectories.

SYMBOLS

= _kl=__=__Ce__hnt V_. _m OF/ft

B

C dimensional constant, 17,600 Btu/ft3/2-sec

Cm _ 1 ft2-secl/2-°F

_Km_mC m Btu

cm specific heat of material_ Btu/lb-°F

g local value of gravitational acceleration, ft/sec 2

h height of entry above surface of planet, ft

i imaginary unit,

j integer

Km thermal conductivity, Btu/sec-ft-°F

kI ratio of local heat flux to stagnation-point heat flux

m,n dimensionless constants, 3.15 and 0.50, respectively

Nm -

q

r

cosh_(T - x)

sinh_T

heat flux, Btu/ft2-sec

distance from planet center, ft



R

s

T

L/D

¥

V

w/c 

radius of curvature at a stagnation point, ft

variable in Laplace transform

temperature, OF

lift-drag ratio

transformed temperature function

ratio of velocity component normal to radius vector to circular

orbital velocity

resultant velocity, ft/sec

ballistic parameter, lb/ft 2

W = kl-_Ce-_hn I V 1TM Btu

# l_I ft- sec3/2

x distance normal to surface, ft

y altitude, ft

Y = _-(_nV sin y)t secl/2

-_nV sin 7

z complex variable

am thermal diffusivity, ft2/sec

atmospheric density decay parameter, --_ ft -I
23500

t time, see

p atmospheric density, slug/ft 3

Pm density of material, lb/ft3

T thickness of plate, ft

7 flight-path angle relative to local horizontal direction,

positive for climbing flight and negative for descent



= -_nV sin 7 sec-i

Subscripts:

o reference value

free stream (ambient atmosphere)

i initial condition

s stagnation point

ANALYSIS

Assumptions and Definitions

For the present analysis, the following assumptions are made:

(i) The atmospherevaries exponentially. (See ref. 5.)

(2) The flow is laminar and the heat rate of any station on the
body is proportional to the value at a stagnation point. (See refs. 5
and 6.)

(3) The velocity is sufficiently high so that the heating rate can

be considered independent of the surface temperature.

(4) The skin (being analyzed) has a zero heat rate on the back

(unexposed) side.

(5) Specific heats for the material are constant.

(6) The vehicle descends through the atmosphere at a constant

velocity and flight-path (or entry) angle.

(7) The flow is one dimensional with radiation neglected.

Assumptions (i) to (3) allowed Chapman (ref. 5) to write the fol-

lowing equations for p_ and q:

= poe- y (1)

n m



with

_=V cos y

Assumption (6) allows y to be written as

y = Vt sin 7 + h (3)

The constants kl, C, m, n, and _ are given in references 5 and 7.

Substitution of equations (i) and (3) into equation (2) gives

klC e-!3hnF V Ime-_nVt sin y

-

For convenience the following definitions are made:

B -- 5)

m = -_nV sin 7 6)

Equation (4) therefore can be expressed as

q = _BKm emt (7)

The applicability of these assumptions is shown in figures i to

for several entry conditions. Numerical integration of the equations of

motion has been used for the calculation of the time history of velocity,

entry angle 3 and altitude. These values in turn have been used with equa-

tion (2) and the values of the 1959 ARI_ atmosphere (ref. 8) in determining

the heating rate qs shown as solid-line curves in figures i to _. The

main test for the validity of the assumptions is whether the velocity and

entry angles are constant and how the deviations affect the heating rate.

Values of qs obtained from equation (7) (dash-line curves) are therefore

included in the figures. For initial values of velocity of 20,000 ft/sec,

entry angle of -20 ° at 400,000 feet, and W/CDA of 120 ib/ft 2, it can be

seen from figure i that the assumptions are good for the first 40 seconds

which include altitudes down to 120,000 feet. Increasing the value of

W/CDA to 1,000 ib/ft 2 in figure 2 increases the time to about 42 seconds
and brings the altitude down to 90,000 feet.



6

In order to illustrate a condition in which these assumptions can-

not be expected to apply_ the same calculations have been made for a very

shallow entry angle. It can be seen in figure 3 that small changes in

the entry angle can represent large percentage changes and consequently

appreciable changes in the altitude and heating rate. This discrepancy

results from assumption 6 which assumes that the flight-path angle remains

constant throughout the analysis. The usefulness of the analysis can be

extended to these shallow entry angles by using a mean value of the angle

for the part of the entry that is being considered. To illustrate this

approach, curves have been included in figure 3 for 7 = -1.92o. The

heat rate as. computed from equation (7) is shown as dash-line curves.

An improvement in the agreement with the solid-line curve can be obtained

by changing the mean value of 7 to -2.10 ° which gives from equation (3)

an altitude which agrees with the corresponding solid-line curves for

altitude at t = 200 seconds. This mean value of 7 when substituted

into equation (7) gives the improved curve appropriately marked in

figure 3.

Transformation and Solution of Basic Equations

The transient temperatures of the surface are governed by the

Fourier equations:

a2T

C_n _x 2 - _t

and

(8)

aT
q = -Km_ (9)

From the previous assumptions the boundary conditions for the Fourier

heat-conduction equation are

_(x_t)
8x x=O

_(x't)1 = o
_X X= T

T(x,O) = T i

°

 :cr0 lo:
: j\:o/k::s

(lO)



These conditions are illustrated by the following sketch which shows T

as a function of x:

_)x ---q

T

=0

0 'I"

X

Equations (8) and (9) with boundary conditions (i0) specify the

solution to the heat-flow problem. This boundary valued problem can be

solved efficiently by the use of operational mathematics, the method of

the Laplace transform in particular. (See ref. 9-) If the Laplace

transform of T(x,t) with respect to t is denoted by

_0 °°

_(X, s) = e-StT(x, t)dt (ll)

then equation (8) and the transformed boundary conditions become,

respectively_

sT = -T i
am dx2

(12)

dY)x _ B=0 S - 60

and

d¥)x = o
(14)
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The solution to the total linear differential equation (eq. (12))

is simply

- Ti
¥(x,s): cle + c2e +- (15)s

The constants CI and C2

to be

are determined by conditions (13) and (14)

-e _(_n _-_

C1 -

2 sinh T]

B

s - LD
(16)

C2 : s - _ (17)

2 sinh(_ T)

Then,

A series solution, which converges quite rapidly for large values

of t, for the inverse transform of equation (18) can be found from the

inversion integral from the theory of complex variables. From this the

temperature is given as

_¢+i_T(x,t)- i lim eZt_(x,z)dz (19)

2_i @__ _ _-i@

where both _ and W are any real positive numbers. Equation (19)

can be evaluated by simply taking the sum of the residues of the expres-

sion

eZt< r_ _z ___



j2_2
The poles of this expression are at z = 0, to_ and -am T2
j = l, 2_ .... The residues of these poles are, then,

Bam
Ti +_

tOT

xI

and

-_mJ 2_ 2t

e COS
T

.2 2
_mJ _

to +

T2

(j = i, 2, 3,

where

.)

Therefore 3

T(x,t) = T i + _ -
COT

B_--_t c°sh_( T- xI

-_j2_2t

2Bol_. _ e T2 cos(_)+ _ (20)
T c%nj2_ 2

j=l co +
T2

In general, most entry conditions are such that the last term

(series on the end) of equation (20) and the term B_m contribute very
_T

little to the temperature of the skin for values of t of i second or

more and can be neglected. This fact can be verified by simply evaluating

a few of the terms for any particular entry condition. The resulting

expression for the temperature is
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T(x,t) : Ti (21)

Working Charts

The expression for the temperature rise T - Ti from equation (21)
is

T- Ti-=_: (22)

This expression can be put into a fo_n which is convenient for applica-

tion by making the following definitions:

AT = T - Ti - WYNmC m (23)

where

y _ _

Nm _

e_ t e-(_nV sin 7)t

V-_nV sin 7

cosmical_xI

(24)

(25)

Cm = (26)

and

klC
W = -BK m - (27)
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In equation (23), only Y and Nm depend on the position and time

variables of the problem; W and Cm are entirely dependent on the

entry conditions V and 7 and on the material under consideration.

If plots are made of Y as a function of _ for various values of t

and of Nm as a function of TI_

x
for various values of --, rapid pre-

T

diction of ZXT could be performed by use of these plots and a knowledge

of the entry conditions and the properties of the material. Such charts

are shown in figures 4 and 5-

Several significant facts can be obtained from figure 4:

(i) At values of T_ less than about 0.3_ the gradients are very

small through the skin (or plate) and the skin can be considered as a

thin plate.

(2) Above a value of T_ of about 2, the effect of thickness of

the plate on the surface temperature is negligible.

(3) The back-side temperature decreases very rapidly as T_

increases above i; at T_ = 3 the back-side temperature rise is only

i0 percent of the heated-side temperature rise and decreases to only

0.i percent at _ = 7.6.

v_m

CONCLUDING REMARKS

Closed-form expressions as approximate solutions of the one-

dimensional heat-conduction equations have been derived for a configura-

tion initially at constant temperatures entering a planetary atmosphere

with constant velocity and entry angle. This solution is for the part

of the entry before the maximum heat-transfer rates are reached. The

atmospheric density is assumed to be exponential and the boundary layer

to be laminar at entry. A series expression exists for the temperature

history. It is noted_ however_ that in general most entry conditions

are such that the only terms in the expression that contribute are the

initial temperature and the term involving the hyperbolic functions.

For this type of entry the expression was written in such form that
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convenient working charts could be presented. An example of the use of
these charts is presented also.

Langley Research Center,
National Aeronautics and SpaceAdministration,

Langley Station, Hampton,Va., July ii_ 1962.



13

APPENDIX

ILLUSTRATION OF USE OF WORKING CHARTS

In order to illustrate the application of the expressions developed

in this report, a typical entry heating condition is considered. It is

assumed that the temperature distribution through copper skins of dif-

ferent thicknesses is required for a vehicle entering the atmosphere at

an altitude of 400,000 feet, a velocity of 20,000 feet per second, and

an entry angle of -20 ° . The skin is assumed to be electrolytic copper

which has a thermal conductivity of 0.0548 Btu/ft-sec-°F at 1,000 ° F.

The radius of the blunt nose is assumed to be i foot. The constants of

the problem are as follows:

V = 20,000 ft/sec

h = 400_000 ft

= _20 °

R =Ift

Km = 0.0548 Btu/ft-sec-°F

Dm = 521 lb/ft 3

Po = 0"00238 slug/ft3

C = 17,600 (from ref. 5)

m = 3.15 (from ref. 5)

n = 1/2 (from ref. 5)

= 23,500 ft (from ref. 5)

cm = 0.104 Btu/ib-°F

Cm = 0.580 ft2-secl/2-°F
Btu

am = 0.001011 ft2/sec
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g = 32.2 ft/sec 2

r = 21,300,000 ft

This example treats the heating of two stations on the body: sta-
tion 1 which is at the stagnation point and station 2 which is at a point
that has a heat flux of i/i0 that at the stagnation point.

Substitution of the values of kl, C, Km, R, _, h,
g, and r into equations (5) and (27) and the values of _,
and y into equation (6) gives the following values for B,

n, m, V_

n_ V,

_, and W:

B : -28.2°F/ft

= 0.1455 see -I

W = 1.546 Btu/ft-sec 3/2

From equation (23) AT is given as

AT = WYNmC m = 0.897YN m

Then, depending on the particular time and station, ZkT can be deter-

mined once Nm and Y are obtained from figures 4 and 5, respectively.

Figures 6 to 8 show the results of these calculations. Figures 6

and 7 show the temperature-rise variation with time for specific values

of X/T for the two body stations under consideration and two plate

thicknesses. These curves are valid for times up to about 40 and

43 seconds for vehicles having values of W/CDA of 120 and 1, O00 lb/ft 2,

respectively, as seen from figures 1 and 2. Figure 8 gives the varia-

tion of the temperature ratio ZkT with x/T for several plate

thicknesses. It is interesting to note that these curves do not depend

on time.
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V = 20,no0 ft/sec
7 = _ 20o

h = 400,000 ftL/D= o

k W/CDA : 120 ib/ft 2

o . f_.-._..__ _
50O O

qs _ -BKme _t

24,000

-- 16,000

Y
-20 _- ----1

_00 _ _N_ 400,000

-_0 X

g 3_0 __ X X 30o,ooo

m /. \
200 \ 200,000

loo / k I loo,ooo

0 _J 0

0 20 &O 60 80 i00 120 iAO

t_ see

V, ft/sec

-- 8,000

y,ft

Figure I.- Time history of velocity, entry angle, stagnation heat-transfer

rate_ and altitude for a high initial flight-path angle and a low

ballistic parameter.
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0 _

V = 20,000 ft/sec

7 = - 20 °

h = 400 000 ft

L/D=O

w/c_ = ioooib/ft2

V

-2O

1,600 _ [
qs = -BKm e_t _'-_

-40 \ I

_ _,2oo_ _ ,
-60 "

° 800 \ //
//

40 _/y
400 F'x

//

0 I0 20 30 40 50

24,000

t_ sec

-I00

16,000

V, ft/sec

_._ 8,000

--....
400,000

300,000

y, ft

200,000

i00,000

60 70

Figure 2.- Time history of velocity, entry angle, stagnation heat-transfer

rate, and altitude for a high initial flight-path angle and high bal-

listic parameter.
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320

240

vqI

¢q

I
V = 25,380 ft./sec

_' =-1.92 °

h = 400,000 ft

L/_) = 0
0

W/CDA = 120 ib/ft 2

k

-2.0 _ _ 8,0O0

\

-4.0 0

\<
\

32,O00

m 24,000

V, ft/sec

-- 16,000

\
qs = -BKm ec''t - \

-8.o _ ,_.. _._ % %

_-8o "'_--- _, \

t / _ 3OO ,000

S 7=-1.920 "_"

80 - 12.0 _). _ 100,000

o _ _"_" _
0 50 lo0 150 200 250 300 350 400 450

t_ se¢

Figure 3-- Time history of velocity, entry angle, stagnation heat-transfer

rate, and altitude for a low initial flight-path angle and low ballis-
tic parameter.
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10.0

8.0

6.0

4.0

3,0

.2 .3 .4 .6 .8 1.O 2.0 3.0 4.0 6.0 8.0 10.0

Figure 4.- Values of Nm for different values of x/T and the

parameter "r_.
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i0.0

1.0

.i

.01

.001

•0001 0
4 6 8

T

Figure 4.- Concluded.

10 12
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100,000

i0,000

1,000

Y, sec I/2

i00

i0

Figure 5.- Variation of Y with _ for various values of t.
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2,800

2,400

h = 400,000 ft

V = 20,000 ft/sec
7 = -20 °

R =l.O ft

Mat er lal _Copper

Km = 0-0548 Btu/ft-sec -°F

_m 52Z lb/ft 3

AT,

2,000

1,600

1,200

800

x- 0

.4

i.o

q=qs ,I
'I

//,

,/
,)'
I

i

/'/

S °/ _-_°_qs-- S

0 8 16 24 32 40 /+8

t, sec

Figure 6.- Temperature-rise variation with time for a plate thickness

T of i inch.
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i, 400

1,200

I,O00

8OO

AT, OF

600

40O

2OO

i

h = 400,000 ft

V = 20,000 ft/sec

= _20 °

R = 1.0 ft

Materialj Copper

Km = 0.0548 Btu/ft-see-°F

_m 52i ib/ft_

x= 0

.4

1.0

/

q 0"lqs_ /

q=qs

/ /\

/ \'%"

0 -- --

0 8 16 24 32 40 18

t, sec

Figure 7.- Temperature-rise variation with time for a plate thickness
of 4 inches.
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h = 400,000 ft

V = 20,000 ft /sec
7 = -20 °

R= l.Oft

Material, copper

Km = O. 0548 Btu/ft- sec-°F

Pm = 521 ib /ft 3

AT

(AT)x=0

1.0 ____

\
.6

.4

.2

\

\

_=0

i/2',

I"

Z,"

0

0 .2 .4 .6 .8 1.0

x/_

Figure 8.- Variation of ratio of temperature rise at any point in plate

to that at the surface of plate with x/T.
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